Extensions 1→N→G→Q→1 with N=C32 and Q=C2xC4oD4

Direct product G=NxQ with N=C32 and Q=C2xC4oD4
dρLabelID
C4oD4xC3xC6144C4oD4xC3xC6288,1021

Semidirect products G=N:Q with N=C32 and Q=C2xC4oD4
extensionφ:Q→Aut NdρLabelID
C32:1(C2xC4oD4) = C2xD12:5S3φ: C2xC4oD4/C2xC4C22 ⊆ Aut C3296C3^2:1(C2xC4oD4)288,943
C32:2(C2xC4oD4) = C2xD12:S3φ: C2xC4oD4/C2xC4C22 ⊆ Aut C3248C3^2:2(C2xC4oD4)288,944
C32:3(C2xC4oD4) = C2xD6.D6φ: C2xC4oD4/C2xC4C22 ⊆ Aut C3248C3^2:3(C2xC4oD4)288,948
C32:4(C2xC4oD4) = C2xD6.6D6φ: C2xC4oD4/C2xC4C22 ⊆ Aut C3248C3^2:4(C2xC4oD4)288,949
C32:5(C2xC4oD4) = S3xC4oD12φ: C2xC4oD4/C2xC4C22 ⊆ Aut C32484C3^2:5(C2xC4oD4)288,953
C32:6(C2xC4oD4) = D12:23D6φ: C2xC4oD4/C2xC4C22 ⊆ Aut C32244C3^2:6(C2xC4oD4)288,954
C32:7(C2xC4oD4) = S3xD4:2S3φ: C2xC4oD4/D4C22 ⊆ Aut C32488-C3^2:7(C2xC4oD4)288,959
C32:8(C2xC4oD4) = Dic6:12D6φ: C2xC4oD4/D4C22 ⊆ Aut C32248+C3^2:8(C2xC4oD4)288,960
C32:9(C2xC4oD4) = S3xQ8:3S3φ: C2xC4oD4/Q8C22 ⊆ Aut C32488+C3^2:9(C2xC4oD4)288,966
C32:10(C2xC4oD4) = D12:15D6φ: C2xC4oD4/Q8C22 ⊆ Aut C32488-C3^2:10(C2xC4oD4)288,967
C32:11(C2xC4oD4) = C2xD6.3D6φ: C2xC4oD4/C23C22 ⊆ Aut C3248C3^2:11(C2xC4oD4)288,970
C32:12(C2xC4oD4) = C2xD6.4D6φ: C2xC4oD4/C23C22 ⊆ Aut C3248C3^2:12(C2xC4oD4)288,971
C32:13(C2xC4oD4) = C6xC4oD12φ: C2xC4oD4/C22xC4C2 ⊆ Aut C3248C3^2:13(C2xC4oD4)288,991
C32:14(C2xC4oD4) = C2xC12.59D6φ: C2xC4oD4/C22xC4C2 ⊆ Aut C32144C3^2:14(C2xC4oD4)288,1006
C32:15(C2xC4oD4) = C6xD4:2S3φ: C2xC4oD4/C2xD4C2 ⊆ Aut C3248C3^2:15(C2xC4oD4)288,993
C32:16(C2xC4oD4) = C2xC12.D6φ: C2xC4oD4/C2xD4C2 ⊆ Aut C32144C3^2:16(C2xC4oD4)288,1008
C32:17(C2xC4oD4) = C6xQ8:3S3φ: C2xC4oD4/C2xQ8C2 ⊆ Aut C3296C3^2:17(C2xC4oD4)288,996
C32:18(C2xC4oD4) = C2xC12.26D6φ: C2xC4oD4/C2xQ8C2 ⊆ Aut C32144C3^2:18(C2xC4oD4)288,1011
C32:19(C2xC4oD4) = C3xS3xC4oD4φ: C2xC4oD4/C4oD4C2 ⊆ Aut C32484C3^2:19(C2xC4oD4)288,998
C32:20(C2xC4oD4) = C4oD4xC3:S3φ: C2xC4oD4/C4oD4C2 ⊆ Aut C3272C3^2:20(C2xC4oD4)288,1013


׿
x
:
Z
F
o
wr
Q
<